Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Curr Protoc ; 2(2): e359, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35113486

RESUMO

Mycobacterium leprae, the etiologic agent of leprosy, cannot be cultured on artificial media. This characteristic, coupled with its long generation time, presents a number of unique challenges to studying this pathogen. One of the difficulties facing both researchers and clinicians is the absence of a rapid test to measure the viability of M. leprae in clinical or experimental specimens. The lack of such a tool limits the understanding of M. leprae immunopathogenesis and makes determining the efficacy of drug treatments difficult. With this in mind, we developed a robust two-step molecular viability assay (MVA) that first enumerates the M. leprae in the tissue; then, this data is used to normalize bacterial RNA quantities for the second step, in which the expression of M. leprae esxA and hsp18 are measured. This assay is specific and sensitive enough to be used on most clinical samples. This protocol describes the steps required to extract DNA and RNA from M. leprae-infected tissue, enumerate M. leprae, and measure M. leprae viability based on the normalized expression of two M. leprae-specific genes (hsp18 and esxA). This protocol also outlines an optimal laboratory design and workflow for performing this assay. © 2022 The Leprosy Mission Nepal. Current Protocols published by Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: DNA and RNA P purification from M. leprae-infected tissue Basic Protocol 2: Enumeration of M. leprae by RLEP qPCR on the DNA fraction Basic Protocol 3: Calculation of M. leprae per tissue and normalization of RNA Basic Protocol 4: Reverse-transcription of normalized RNA to generate cDNA Basic Protocol 5: Determination of M. leprae viability using HSP18 and ESXA qPCR on the cDNA Support Protocol 1: M. leprae qPCR primer/probe stock preparation Support Protocol 2: Preparation of plasmid stocks and standard curves.


Assuntos
Hanseníase , Mycobacterium leprae , DNA Bacteriano/genética , Humanos , Hanseníase/diagnóstico , Mycobacterium leprae/genética , RNA Bacteriano/genética , Reação em Cadeia da Polimerase em Tempo Real
3.
PLoS Negl Trop Dis ; 14(9): e0008583, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32936818

RESUMO

BACKGROUND: Subclinical infection with Mycobacterium leprae is one potential source of leprosy transmission, and post-exposure prophylaxis (PEP) regimens have been proposed to control this source. Because PEP trials require considerable investment, we applied a sensitive variation of the kinetic mouse footpad (MFP) screening assay to aid in the choice of drugs and regimens for clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: Athymic nude mice were inoculated in the footpad (FP) with 6 x 103 viable M. leprae and treated by gastric gavage with a single dose of Rifampin (SDR), Rifampin + Ofloxacin + Minocycline (SD-ROM), or Rifapentine + Minocycline + Moxifloxacin (SD-PMM) or with the proposed PEP++ regimen of three once-monthly doses of Rifampin + Moxifloxacin (RM), Rifampin + Clarithromycin (RC), Rifapentine + Moxifloxacin (PM), or Rifapentine + Clarithromycin (PC). At various times post-treatment, DNA was purified from the FP, and M. leprae were enumerated by RLEP quantitative PCR. A regression analysis was calculated to determine the expected RLEP value if 99.9% of the bacilli were killed after the administration of each regimen. SDR and SD-ROM induced little growth delay in this highly susceptible murine model of subclinical infection. In contrast, SD-PMM delayed measurable M. leprae growth above the inoculum by 8 months. The four multi-dose regimens delayed bacterial growth for >9months post-treatment cessation. CONCLUSIONS/SIGNIFICANCE: The delay in discernable M. leprae growth post-treatment was an excellent indicator of drug efficacy for both early (3-4 months) and late (8-9 months) drug efficacy. Our data indicates that multi-dose PEP may be required to control infection in highly susceptible individuals with subclinical leprosy to prevent disease and decrease transmission.


Assuntos
Infecções Assintomáticas/terapia , Hansenostáticos/uso terapêutico , Hanseníase/tratamento farmacológico , Mycobacterium leprae/efeitos dos fármacos , Profilaxia Pós-Exposição/métodos , Animais , Carga Bacteriana/efeitos dos fármacos , Claritromicina/uso terapêutico , Combinação de Medicamentos , Hanseníase/transmissão , Camundongos , Camundongos Nus , Minociclina/uso terapêutico , Moxifloxacina/uso terapêutico , Mycobacterium leprae/crescimento & desenvolvimento , Rifampina/análogos & derivados , Rifampina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA